Weak Type Radial Convolution Operators on Free Group

نویسندگان

  • TADEUSZ PYTLIK
  • RYSZARD SZWARC
چکیده

Radial convolution operators on free groups with non-negative kernel of weak type (2, 2) and of restricted weak type (2, 2) are characterized. Estimates of weak type (p, p) are obtained as well for 1 < p < 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Singular Convolution Operators on the Heisenberg Group

We consider the L mapping properties of a model class of strongly singular integral operators on the Heisenberg group H; these are convolution operators on H whose kernels are too singular at the origin to be of Calderón-Zygmund type. This strong singularity is compensated for by introducing a suitably large oscillation. Our results are obtained by utilizing the group Fourier transform and unif...

متن کامل

Characterizations of Hankel Multipliers

We give characterizations of radial Fourier multipliers as acting on radial L functions, 1 < p < 2d/(d + 1), in terms of Lebesgue space norms for Fourier localized pieces of the convolution kernel. This is a special case of corresponding results for general Hankel multipliers. Besides L −L bounds we also characterize weak type inequalities and intermediate inequalities involving Lorentz spaces....

متن کامل

Weights for Commutators of the One-sided Discrete Square Function, the Weyl Fractional Integral and Other One-sided Operators

Abstract. The purpose of this paper is to prove strong type inequalities with one-sided weights for commutators (with symbol b ∈ BMO) of several one-sided operators, such as the one-sided discrete square function, the one-sided fractional operators, or one-sided maximal operators given by the convolution with a smooth function. We also prove that b ∈ BMO is a necessary condition for the bounded...

متن کامل

Best Approximations for the Laguerre-type Weierstrass Transform on [0,∞[×r

For α = n− 1, n ∈ N\{0}, the operator D2 is the radial part of the sub-Laplacian on the Heisenberg groupHn (see [2, 4]). These operators have gained considerable interest in various fields of mathematics (see [1, 4]). They give rise to generalizations of many two-variable analytic structures like the Laguerre-Fourier transform L, the Laguerre-convolution product, the dispersion and the Gaussian...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008